Solutions for Discussion Problems

Wednesday, October 21

1. (a)

$$
\frac{d}{d x}\left(\frac{\log _{10} x}{10^{x}}\right)=\frac{10^{x}\left(\frac{1}{x \ln (10)}\right)-\left(\log _{10} x\right)\left(10^{x} \ln (10)\right)}{\left(10^{x}\right)^{2}}
$$

(b)

$$
\frac{d}{d x} \cos ^{-1}(5 x)=\frac{-1}{\sqrt{1-(5 x)^{2}}} \cdot 5
$$

(c)

$$
\begin{aligned}
\frac{d}{d x} \cos \left(x^{\cos (x)}\right) & =-\sin \left(x^{\cos (x)}\right) \frac{d}{d x}\left(x^{\cos (x)}\right) \\
& =-\sin \left(x^{\cos (x)}\right) \frac{d}{d x}\left(e^{\cos (x) \ln (x)}\right) \\
& =-\sin \left(x^{\cos (x)}\right) e^{\cos (x) \ln (x)} \frac{d}{d x}(\cos (x) \ln (x)) \\
& =-\sin \left(x^{\cos (x)}\right) x^{\cos (x)}\left(-\sin (x) \ln (x)+\cos (x) \frac{1}{x}\right)
\end{aligned}
$$

2. Since $x y=15, y=15 / x$, so we're minimizing

$$
3 x+5 y=3 x+5(15 / x)=3 x+75 / x
$$

on $(0, \infty)$. Write $f(x)=3 x+75 / x$. We have

$$
f^{\prime}(x)=3-\frac{75}{x^{2}}
$$

so there's a critical point at $x=5$. (Also at $x=-5$ but that's outside our interval.) Now

$$
f(5)=3 \cdot 5+75 / 5=30
$$

Checking our endpoints,

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow \infty} f(x)=+\infty
$$

So the minimum value is 30 at $x=5$ and $y=3$ and there's no maximum.
3. (a) $x=-3$ and $x=-1$
(b) Increasing on $(1, \infty)$ and decreasing elsewhere.
(c) Local min at $x=-1$.
4. (a)

$$
\begin{aligned}
g(x) & =9 x^{1 / 3}+4 \\
g^{\prime}(x) & =9 \cdot \frac{1}{3} x^{-2 / 3}=3 x^{-2 / 3} \\
g^{\prime \prime}(x) & =3 \cdot \frac{-2}{3} x^{-5 / 3}=-2 x^{-5 / 3}
\end{aligned}
$$

(b) $g^{\prime \prime}$ is nonzero everywhere and undefined at $x=0$. For $x<0, g^{\prime \prime}(x)>0$. For $x>0, g^{\prime \prime}(x)<0$. So g is concave up on $(-\infty, 0)$ and concave down on $(0, \infty)$.
(c) Concavity changes at $(0,4)$ as we said in part (b).
5. We haven't covered this yet.

